Bandlimited Spatiotemporal Field Sampling with Location
and Time Unaware Mobile Senors

B. Tech. Project Report
Spring 2018

Submitted in the partial fulfilment of
the requirements for the degree of

Bachelor of Technology

By

Sudeep Salgia
14D070011
Department of Electrical Engineering

Under the guidance of
Prof. Animesh Kumar
Department of Electrical Engineering

7/



Acknowledgments

I would like to thank my guide, Professor Animesh Kumar for his constant guid-
ance and support. I am really grateful to him for introducing this problem to me,
exposing me to current literature and his valuable inputs throughout the project.
His able guidance helped me understand the problem and go beyond what is avail-
able to devise a solution with understanding and intuition.

I am indebted to him for his support at a time when he was very busy with multiple
students, his own research and teaching responsibilities.



Abstract

Sampling of smooth spatiotemporally varying fields has been a topic that been studied extensively
in literature. Classical approaches to this problem assume the precise knowledge of the sampling
locations and the time instants of sampling enabling interpolation or reconstruction. Moreover,
classical approaches involve sampling using sensor networks. However, with the advent of mobile
sampling, it is important to develop techniques that look into the practical considerations of the
reconstruction and incorporate it into the estimation methods. This report considers two such
aspects, economic feasibility and vehicle modeling.

In the first part of the work, the sampling and reconstruction of a spatiotemporal bandlimited
field is addressed, where the samples have been obtained by a location and time unaware mobile
sensor. The order of the samples, however, is assumed to be known. The obtained samples have
been assumed to be corrupted by measurement noise. Furthermore, the evolution of the field is
modelled by a known linear constant coefficient partial differential equation. In this challenging
setup, a regression style estimate has been developed for the reconstruction of the spatial field.
The intersample distances and the intersample timestamp differences are assumed to be coming
from independent, unknown renewal processes.

In the second part, the issue of independent intersample distances is addressed. The inertia of
the moving vehicle constrains the independence between the intersample distances, making them
correlated. This part, thus, aims at estimating spatially bandlimited fields from samples, cor-
rupted with measurement noise, collected on sampling locations obtained from an autoregressive
model on the intersample distances. The autoregressive model is used to capture the correlation
between the intersample distances.

In both the cases, if n is the average number of samples of the field obtained by the sensor, then
it is shown that the mean squared error decreases as O(1/n).
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1 Introduction

Sampling of smooth spatiotemporally varying fields is a well studied topic in the literature
[1, 2]. Classical approach assumes that the field is observed at known sampling locations and
known timestamps ensuring interpolation or reconstruction [I, 2]. The field is assumed to evolve
according a physical law, typically governed by a suitable partial differential equation (such as
the diffusion equation) [3].

Recently, mobile sensing has been proposed for sampling [4} [5] [6]. Mobile sampling comes along
with its associated costs. Often that devices that are needed to be employed to have a precise
knowledge of the sampling locations and the sampling instants, are expensive. As a result, in
practical implementations of such a sampling technique, economic feasibility is a major concern.
For cost reduction, it is desirable to work with a location unaware and preferably even time
unaware, inexpensive mobile sensor for the purpose of sensing and still be able to reconstruct
the spatiotemporal field upto a desired accuracy. Furthermore, it would be an added benefit if
this could be done for any physical spatiotemporally varying field. This is the core motivation
behind the work.

The problem is addressed in two different aspects, namely, economic feasibility and modeling of
the vehicle. In the first part, the spatiotemporal variation is studied to address the economic
feasibility while in second part the vehicular movement is modeled separately. To the best knowl-
edge of the authors, there has been no work in sampling fields governed by any linear partial
differential equation (PDE) with constant coefficients. It is to be noted here that the class of
partial differential equations referred here is the one that includes only those equations that are
suitable to model a physical field. Thus, whenever this work mentions a “general PDE” it is
inherently assumed that the equation belongs to such a class. Also, autoregressive modeling of
the intersample distances is not studied in the literature. Thus, both the aspects are relatively
new.

The analysis of both the problems is done separately. However, the problem setup is very
similar and in the initial part of the report no distinction is made because the topics discussed
are common to both the scenarios. The only difference is that in the case of autoregressive
modeling, the field is considered to be temporally fixed to simplify calculations. Thus, the reader
is requested to understand the spatiotemporal field in relevant context for each of the problems.

This work assumes that such an inexpensive mobile sensor is available for sampling a spatial field
of interest in a finite region. The mobile sensor is location and time unaware, which presents a
challenging field reconstruction problem. Is it possible to sample and reconstruct a spatiotem-
poral field governed by a partial differential equation, where the samples are obtained by a
location-unaware, time-unaware mobile sensor. This works answers this question in affirmative
under some conditions. The results hold even when additive measurement noise is present in the
samples.

Also, it can be shown that if such location unaware noisy samples are obtained locations from
an autoregressive process, the field still can still be reconstructed with a vanishing error.

The field is assumed to be bandlimited. The evolution of the spatiotemporal field is character-
ized by a linear partial differential equation with constant coefficients, assumed to be known.
Bandlimitedness implies a finite number of Fourier coefficients characterize the spatial field. The
key aspects utilized in solution include oversampling, denoising, and utilization of spatial/tem-
poral order of samples. The latter is assumed to be known. Our solution works by developing a
regression style estimate for the reconstruction of Fourier coefficients of the spatiotemporal field
at time ¢t = 0. The work later deals with stability issues of the obtained results and proposes
standard regularization methods for the same. With PDE known, the coefficients at all times can
be predicted from the initial Fourier series coefficients. The sampling methods for the two cases,
however, are slightly different. In the first case, the intersample spacings and the intersample
time stamp differences are assumed to be from independent unknown renewal processes. How-
ever, in the second case, the intersample spacings are assumed to coming from an autoregressive



process such that stochastic term of the same is coming from an unknown renewal process.

If n is the average number of samples of the field obtained by the mobile sensor, then our main
result shows that the mean-squared error in the spatiotemporal field estimation decreases as
O(1/n).

For mathematical tractability, the spatiotemporal field is assumed to be one dimensional in space
evolving according to a known partial differential equation. The smoothness of the field is mod-
eled by is spatial bandlimitedness. The measurement noise is independent of the intersample
spacing and intersample timestamp processes. It is also assumed to have zero mean and a finite
variance. Oversampling is the key technique used to denoise and mitigate location-unawareness
in this work.

1.1 Prior art
1.1.1 Reconstruction of Spatiotemporal Fields

The literature consists of two parts: (i) papers which approach source reconstruction; and (ii)
papers which address this problem as a sampling/reconstruction problem. The problem of esti-
mating sources in a diffusive field is a severely ill-conditioned problem and hence certain regular-
ization methods need to be employed. Spatial sparsity of sources has been used to reconstruct
sources[7] using maximum likelihood estimators. Lu and Vetterli have used sparsity aware super
resolution techniques to obtain sources[8] and other on an adaptive spatiotemporal sampling
scheme [9]. A method of localizing sources has been proposed by Ranieri et al.[3] which has been
extended to real line [I0]. Sampling with a mobile sensor has been a topic of interest recently
[4, 5, [6]. However, mobile sensing typically assumes sampling locations to be known. When
spatial field is fixed with time, sampling with a location-unaware mobile sensor has also been
addressed recently [I1]. This work is novel since both the sampling locations and the timestamps
of the samples are unknown. It is also assumed that the field is evolving while measurements are
being made by the mobile sensor.

1.1.2 Samples from an Autoregressive process

Sampling and reconstruction of discrete-time bandlimited signals from samples taken at unknown
locations was first studied by Marziliano and Vetterli [I2] who had addressed the problem in a
discrete-time setup. Browning[13] later proposed an algorithm to recover bandlimited signals
from a finite number of ordered nonuniform samples at unknown sampling locations. Nordio
et al.[T4] studied the estimation of periodic bandlimited signals, where sampling at unknown
locations is modeled by a random perturbation of equi-spaced deterministic grid. More gener-
ally, the topic of sampling with jitter on the sampling locations [I5], [16], is well known in the
literature.Mallick and Kumar [I7] worked on reconstruction of bandlimited fields from location-
unaware sensors restricted on a discrete grid. A more generic case of sampling from unknown
locations coming from a known underlying distribution was introduced recently[I8]. Further,
the work [I1], deals with estimation of field from unknown sampling locations coming from an
unknown renewal process. This work is different from all others in the sense that the sampling
model incorporates the correlation between the intersample distances and thus addresses a more
practical scenario. The intersample distances are unknown have been considered to be coming
from an autoregressive model of order 1 whose stochastic part is an unknown renewal process.

1.2 Notation

The spatiotemporally varying field will be denoted as g(x,t) and its variants. Average sampling
density will be denoted by n. All vectors will be denoted in bold. The £2 norm of a vector x is
denoted by ||x||2. The expectation operator will be denoted by E[.]. The expectation is over all
the random variables within the arguments. The trace of a matrix A will be denoted by tr(A).



For a complex number z, (z) denotes the real part of z. The set of natural numbers, integers,
reals and complex numbers will be denoted by N, Z R and C respectively. Also, j = +/—1.

1.3 Organization

The report is divided into two sections for each of the problems. Each of them has the following
subsections. Subsection describes the field model, the distortion criteria, the sampling model
and the noise model. The estimation of the field is presented in Subsection The simulations
have been shown in Subsection [2:3pnd. Section [] concludes the report.



2 Time varying fields with location and time unaware sen-
sors

2.1 Field, Sampling, Noise Model and Distrortion Criteria
2.1.1 Field Model

The field is considered to be spatially smooth over a finite support, one dimensional in space and
evolving with time according to a Partial Differential Equation. The PDE is linear with constant
coefficients and is assumed to be known and given by

/
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;piwg(x,t) = ;qi@g(%t) (1)

a0

where, D00 f(y) = f(y). This will be represented throughout the report in the terms of polyno-
Y

mials. Define two polynomials as
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where the coefficients are same as in the differential equation. If for notational convenience,

o\ (o
(8) = ((’91 , then the original partial differential equation can be written as
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To incorporate the smoothness of the field, the field is assumed to be bandlimited. It is important
to ensure that the field is bandlimited as it evolves with time. Intuitively speaking, this condition
should hold true if we have know the field is spatially bandlimited at ¢ = 0, because time
evolution is unlikely to affect the spatial bandlimitedness. Formally speaking, if the degree of
the polynomial p is m, then if m — 1 partial derivatives of g(z,t) along with g(z,t) are spatially
bandlimited then the function g(x,t) will be spatially bandlimited for all ¢ > 0 if the field evolves
according to the given PDE. A detailed proof of this has been given in Appendix A. The field
under consideration is assumed to be bandlimited for all ¢ > 0. Without loss of generality, the
support of the field is considered to be [0, 1]. It can thus be represented as,

b

g(x,t) = Z ar(t) exp(j2rkx) ; ax(t) :/ g(x,t) exp(—j2mkx)dx (4)
k=—b 0

WLOG field is assumed to be bounded. That is, |g(z,t)] < 1 V(x,t).

2.1.2 Distortion Criteria

The distortion will be measured by the mean-squared error between the field and its estimate at
t = 0. Let the estimated field be G(x,t) and its Fourier coefficients be A[k], then the distortion
criterion is defined as

plc] [ [ 160 - ate?]| )
= E zb: ‘Ak(t) — ak(t)|2‘|
k=—b t=0
b
= 3" E[|44(0) - ax(0)?] (6)
k=-b



2.1.3 Sampling Model

It is assumed that there is a mobile sensor which moves from = 0 to = 1 while recording
samples of the field g(x,t). As the sensor moves, the field also evolves. This is the key distinction
from models used in the literature. Spatial samples are collected on points generated by an
unknown renewal process [I1]. Let X7, X5,... be the intersample distances and Ni, Na,... be
the corresponding intersample time intervals. These variables are assumed to be the realizations
of two independent, possibly different, and unknown renewal processes. Let the intersample
distributions for X and N be f(x) and g(z), respectively. The sampling locations S,, are given
by S, = >.1; X;. The sampling is done over [0,1], and M is the random number of samples
that lie in this interval. Note that the stopping condition Sy; < 1 and Sp;41 > 1 results in M ;
and, it means M is a well defined random variable[I9]. Note that, the number of samples in the
interval only depend on the spatial sampling density and not on the temporal counterpart.

For the purpose of ease of analysis and tractability, the support of the distributions of X and
N are considered to be finite and inversely proportional to the sampling density. Hence, it is
assumed that

0<X<20<N<”andEX]=E[N] =2, (7)
n n n
where 1 < A\, 4 < n are parameters that characterize the support of the distributions. Both are
finite numbers, independent of the average sampling density n. These would be important factors
that govern the constant of proportionality in the expected error of the estimate. Furthermore,
A is an important factor also to determine the threshold on the minimum number of samples.
Applying Wald’s identity[I9], on Sps11, and using equation (7)),

E[M + 1E[X] = E[Sar+1] (8)
(B[M] + 1) = B[S
E[M] = nE[Spr41] — 1 (9)

By definition, Sp;41 > 1 and Sy, < 1. Since Spy41 = S+ Xpra1, therefore, Spyrp1 < 1+ X401 <
1+ % Use these inequalities with equation 7 to obtain,

n—1<EM<n+A-1 (10)

Also, the bound on each X; < %, along with Sp;41 > 1 gives,
A
(M+1)—>1orM>§—1 (11)
n

The results in and , imply that expected values of M scales linearly with n thus justifying
the name average sampling rate for n. The timestamps are assumed to be T,, = E?:l N;. The
only assumption on the sampling model with respect to time is that it has been assumed that
all samples are collected within some time Ty, i.e., Thy < Ty and Ts41 > Tp and it is assumed to
be known. That is the time stamp at the beginning ¢ = 0 and at the end of the mobile sensing
experiment must be known. The value of Ty may vary. Since nN < p < n, we expect that
Ty < M.

2.1.4 Measurement Noise Model

It will be assumed that the obtained samples have been corrupted by additive noise that is
independent both of the samples and of both the renewal processes. For simplicity, the noise
is considered to be varying only spatially. That is, at all time instants, the distribution of the
noise remains the same, which is assumed to be unknown in this work. Hence, W (x,t) = W (z).
Thus, the samples obtained would be sampled versions of g(x,t) + W(x,t), where W(z,t) =
W (z) is the noise. Also, since the measurement noise is independent, that is for any set of
measurements at distinct points sy, sa, 83, ... S,, the samples W (s1), W(s2), W(s3),... W (sn)
would be independent and identically distributed random variables. Note that the sampling
instants have not been considered because of the distribution being temporally static. The only

statistics known about the noise are that the noise is zero mean and has a finite variance, o2.



2.2 Field Estimation from Samples

This section will highlight the estimation of the field from samples whose locations and times-
tamps come from two unknown independent renewal processes.

2.2.1 Field under the PDE

A brief discussion of the field under its PDE is presented first. Using the fact that Fourier series
are linear in coefficients, and combining the equations and , and using the orthogonality
of Fourier basis, we can write,

b

n i b
szaﬁ (Z k(t) exp(j2mkx) ) Z%aaxz <Z ag(t) exp j27T/€:L’)>

k=—b k=—b

b m b n
Z (sza g];( )> exp(j2rkz) = Z ak(t) ( qi(j27rk)i> exp(j2nkx)
k=—b \i=0 k=—b i=0
(s Pa®) Y | |
Z sz o exp(j2rkx) ax(t)q(j27k) exp(j2nkz)
k=—b \i=0 k=—b

S 0T8O g ankyant) = 0 i = b, ..
1=0

S

(12)

Essentially, each ax(t) evolves by an ordinary differential equation (ODE) with constant coef-
ficients. The solution of ODE with constant coefficients is well known (via unilateral Laplace
transform [20]). For each k, this leads to the polynomial equation,

m

aviA rt
E piici —q(j2mk)Ae™ =0
= o

(Zpiri — q(j27rk)> Ae™t =0
i=0
p(r) —q(j2mk) =0 (13)

The solution for ay(t) is a of the form Ae™, where r is the root of the above polynomial and A
is a constant independent of ¢. Let the roots of the above polynomial be 71(k),r2(k), . .. rm (k).
Note that the roots of the polynomial are indexed by k as well, implying there is a set of m
roots for each value of k. It is essential here to realize that if the field is a physically feasible
one, then R(r;(k)) <0;:=1,2,...,m;k = —b,...,b, that is all roots have a non positive real
part. Furthermore for simplicity of analysis, all of the roots r1(k),r2(k), ... rm (k) are considered
to be distinct for a given kE| However, it is possible that r;(k1) = r;(k2) for some 4, j, ki # ko.
The condition is similar to the one obtained in control theory, where we want the poles of the
closed loop system to lie in the left half plane. Thus, we can use criteria like the Routh Hurwitz
condition[21], to ensure the roots have negative real parts in our case.

In fact, the solution for ay(t) can thus be written as a linear combination of these roots. Thus,
Za’“ exp(r;(k)t) (14)

The coefficients have been represented so to maintain consistency of representation of ay(t)
as a function of time. Also ay;(0) are finite constants independent of everything else. Let

1If there is a repeated root 7, then the solution will be of the form e”t and also te™, which will make the
problem complicated. Such cases can also be treated in a similar manner that has been described in the report.
To be very specific, if the repeated root is 0, it can be easily taken into the given framework by combining all the
repeated terms with it. This is because if = 0, then te™ = t, which diverges and hence cannot be the solution
for a physical field. Such nuances have been omitted to simplify the description of the process.



ap = max; |ax;(0)]. Using this representation, the partial derivatives of g(z,t) wrt to space and
time can be bounded as follows.

%9(957 t)‘ = ‘(?at Z ar; (0) exp(r; (k)t) exp(j2rka)
i=1

0)ri (k) exp(ri(k)t) exp(j2mkx)

ari(0)r; (k) exp(r;(k)t) exp(j2rkz)
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< mapR (15)
9 9 <
‘(%g(x,t)’ = ‘8:5 k;b ay(t) exp(j2nka)

b

Z ay(t)j2nk exp(j2rkz)
k=—b

ay;(0)j27k exp(r;(k)t) exp(j2mkx)

< may2bmr (16)

The third step follows from triangle inequality, fourth step uses the fact that ®(r;(k)) < 0 and
the bound on r;(k) uses the Rouche’s theorem [22]. The value of R can be expressed in terms
of |p;|’s, which are finite and so is the upper bound. Using the above expression for ay(t) and
using it in equation (4]) to obtain the value at (z,t) = (S,,T,), we get,

9(Sn, Ty) Z Za’” exp(r;(k)T,,) exp(j27kSy,) (17)
k=—b1=1

The above equation can be written in a vector notation form. Let ey ;(z,t) = exp(r;(k)t+j2nkx).
Define,

eri(x,t) == [er1(x,t), era(z,t),...,exm(x,1)]
ag = [ar1(0), ag2(0), ax3(0), ..., agm(0)]
a=[a_y,...a_1,ap,a,...a)"

e(x,t) = [e_p(x,1),...,ep(x, )7 (18)

Observe that a and e(z,t) are column vectors, while ey(x,t) and aj are row vectors. Since
R(ri(k)) <0, so |ex,(x,t)] < 1. This implies,

m

[lex(z, )] Z|exp ri(k)t + j2rkz)|? Z

lle(x,t)||* = Z llex(z,1)] Z m=m(2b+1) (19)

k=—b k=—b
Therefore, on using 7 equation (17) can be rewritten as,

g(Sann) = eH(SnaTn) a (20)

10



Due to measurement-noise, the observed field values will be ¢(S;,T;) + W(S;,T;),1 < i < M.
Note that S; and T; are sampling locations and their corresponding time stamps. Define two
vectors,

g= [gl,gg,...gM]T and w = [wl,wg,...wM]T, (21)

where g; = ¢(5;,T;) and w; = W(S;,T;). Let g5 be the measurement-noise affected samples
obtained at (S1,71),...,(Sm,Ta). Then, gs = g + w. Combining equation and , we
get,

eH(Sth) eH(Sl,Tl)
eH(S27TQ) eH(SQ,Tg)

g= . a=Ya; where Y = . (22)
e (Sa, Twr) e (S, Tw)

2.2.2 Estimation method

The main idea behind the reconstruction of the field would be that the sampling location and
time instants are “near” to the locations and time instants, had we sampled uniformly both in
time and space for M points. Thus, to incorporate the same into the formulation, let

. T
si:ﬁ,andtizlﬁoforlgiSM (23)
eH(Slatl)
T eH(527t2)
80 = [gulv Gu2; - - - gul\/l] ; Yo = . , (24)
e (sar tar)

where g,; = g (si,t;),4=1,2,..., M. This implies, go = Ypa . Note that Yy has Vandermonde
structure[23]. Now, since we expect that the sampling locations are “near” to the grid points, we
can estimate the Fourier coefficients by assuming that samples have been obtained by multiplying
the Fourier coefficient vector by Yj instead of the unknown matrix, Y. The best least-squared
estimate of the Fourier coefficients, a, thus would be,

a = argmin = ||g; — Yyb||? (25)
b

Since the main way to achieve to estimate the field relies on oversampling, the sampling den-
sity will be generally very large and thus, n > m(2b + 1), making this problem a linear least
squares estimation problem (regression). The solution to this problem is well known and uses
the psuedoinverse of the matrix. Therefore,

a= (Y, 'y{ g, (26)
a= (Yy"Y0) 'Y go (27)

The second equation is obtained in a similar manner. However, it is important to realize at this
point that the first equation is a least-square estimate because of the unknown locations and
noise while the second equation is an ezxact solution. The distortion given in can be rewritten

11



as,

b b M m m 2
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b
<m Y Effja-al?]
k=-b
=m(2b+ 1)E [||a— al|?] (28)

n 2 n

The third step uses the inequality (Z ai> <n Z a? for ai,as,...,a, € R. The following is
i=1 =1

the main result of this work.

Theorem 1. Let a and a be as defined in equation , Under the sampling model discussed

and the corruption by the measurement noise, the following result holds

!

. C
E[lla—al*] <=

n

where n is the average sampling density and C' is a positive constant independent of n. It depends
on the bandwidth, b of the signal, the support parameters of the renewal processes, A and p, the
coefficients of the PDE and the noise variance, 0. The proportionality constant, C' is directly
proportional to b, X\, i and 0. The dependence on the coefficients of the PDE is in a very non

linear way through the roots of the equations whose almost all coefficients are determined by these

2b+ 1)’
values. Correspondingly, the distortion error can be bounded as M
n

Proof. Thus, the value of E Ué — aﬂ will be upper bounded to obtain a bound on distortion.
Let A= (YHYy) 1YL
Eflla-al’] =E [I\(YOH%)’lYng —al|?]

=E[||(Yy"Y0) Yy (g + w) — (Y7 Y0) Y gol°]

=E[||A(g +w — go)|?]

< 2E [||A(g — go)lI?] + 2E [|| Aw|[?]

< 2E [Mpaxllg — 2ol ?] + 2E [||Aw|] (29)
where second step follows from equation and definition of g, the fourth step from Cauchy

Sewharz inequality and A4, is the largest eigen value of A A. Both the terms, along with the
bound on A% . in the last step will be analyzed separately to obtain the bound on the error.

max?

Also consider,

g — go||> = (Si,T3) — g(sists)|?

-3
i( max |Vg||2) (15— s+ T 17}
} (30)

1
iTy

-
M

12



The second step follows from the fact that for a smooth function h(x), for x € R”, |h(x1) —
h(x2)| < (maxHVhH) [|x1 — x2||. The third step uses the fact that ||Vgl||2 is upper bounded.

2 2
This follows from the fact that ||Vg||3 = <§g(x,t)> + (gtg(x,t)> along with the bounds
o
on partial derivatives. From and , we can write,

d > /a 2
199l = (o)) + (Goe0) < Onank? + magrzm? €3 (@)
for some Cy € R. Now consider,

(a)
Apax < tr(A7A)
= tr(AAY)
= (Y Yo) Y Yo (Y Y0) )
= tr((Yy"Yo) ™) (32)
(a) follows from the fact that trace of a matrix is the sum of its eigen values and since A” A is
symmetric, all its eigen values will be non negative therefore, the sum will be greater than the
largest eigen value. For the second term in the equation , the structure of the noise model
can be exploited to simplify the expression. Note that using the assumptions on the noise model,
E[w] = 0 and E[ww?T] = 021, where [ is the identity matrix.
E [|[Aw]]*] = E [w" (A" Aw)]
W [tr (w' (A" Aw))]
O g [t (A7 Aw)wT)]
)

©

(4)

(E [AHAWWT])

(E [A"A] E [ww"])

tr (= [474] 0°1)

=E [tI‘(AHAO'2I)]

E [o*tr(A" 4)]

o°E [er((YH o) )] (33)

tr
tr

where,

(a) uses the fact that ||Aw]|? is scalar hence, it equals its trace,
(b) follows from tr(AB) = tr(BA)

(c) uses linearity of expectation and the trace operator

(d) is a result of independence of noise and sampling

Thus, from equation , and 7 it is clear that characterizing the bound on tr((YYy)™1)
is required and will also suffice for the purpose.

Let A1, A2,..., Aan41) be eigen values of Y{1Yy. Since the matrix is symmetric, A; > 0 i =
1,2,...,m(2b + 1). Using the property of eigen values, the eigen values of (Y{1Yy)™1, will

be —, —,...,———. Let Apax and Ay, be the maximum and minimum eigen values of
A1 Ao Am(2b+1)

1
Y{1Yy. Therefore, FV— and

min max

Applying the Polya-Szego’s inequality[24] on the sequence formed by eigenvalues of Y{!Y, and
by those of (Y{Yy)™1, we can write

will be the maximum and minimum eigen values of (YYy)™?

Zm(2b+1))\ Zm(2b+1)(1/)\) < 1 @ n Amin 2 (34)
m(2b+1) NoYSWE T4 \ Amin Amax
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m(2b+1) m(2b+1)
Noting that tr(Y{7Yy) = Z i, tr(YEYy) ™Y = Z (1/X;) and k is the condition number
=1 =1
of the matrix YOHYO7 it can be written as,

(VYD) tr((VTYe) ) < T2 (n+ 1)2

4 K
m2(2b + 1)2 1\?
Y Y, _— — 35
(1)) < T (e 1) (35)
Consider,
eH(sl,tl)
I eH(827t2)
tr(Yy ' Yo) =tr | [e(s1,t1),e(s2,%2),...,e(sar,tar)] .
e (snr,tar)

= lle(s1, t2)|[* + lle(sz, t)lI* + - + [le(sar, tar)||*

(@) =
= Z |lex (s, t)|[?
) M b m ] )
= Z > Z|€i(5i7ti)\
M b m
= Z Z ZGXP(Q%(Tj(k))ti)

fexp (20500 12 ) (36)

Both (a) and (b) follow directly from equation (I8). For a given value of j and k, the sum

i1
Zexp (29?(7“]- (k))%;) can be considered as a scalar multiple of Riemann sum approximation

To
of the integral / exp(2R(r;(k))t)dt with partitions chosen uniformly over the interval. The

only difference heore that the terms in the sum are not multiplied by the interval difference, which
in this case is the same for all intervals and hence can be taken out as a scalar. It is interesting
to note here that the value of this integral can be used as a bound on the value of the sum
because of that fact that exp(28(r;(k))t) is decreasing since R(r;(k)) < 0 V4, k. The bound can
be obtained as,

iTo

To M
/0 exp(2R(r; (k))t)dt = Z exp(2R(r; (k))t)dt

G=yTy

(a)

< Z/@ 1, O (2%@( ))( M)T°> dt
_ Zexp (2% (k) L ) exp ( 2R (r (k ))ﬁ) /(TJ dt
= exp ( 2R (r; (k ) Zexp <29‘3 74( Ry >

< exp(—2R(r; (k Zexp (2% (r;( ))ZT°> (37)

where (a) follows from the decreasing nature of exp(2R(r;(k))t) and the last step uses that fact
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that Ty < M. This implies,

11

emp(?%@ﬂkﬁﬂj> 2A4emx2%&AkDXA " exp(2R(r; (k)t)dt = MCyy (38)

To
where Cj, = exp(23%(7“j(k)))/ exp(2R(r;(k))t)dt is a finite constant for each j, k. Using

0
equation in equation , we get

m b
tr(Yy'Yp) ZZ Z Cir = MC3 (39)

where C3 is a finite deterministic constant given by C3 = Z;nzl Zzsz Cji. Clearly, it is
independent of n. Since Y is a random Vandermonde matrix, using the result in [25] for large
random Vandermonde matrices with complex entries lying in the unit circle, we can also say
that the condition number of every realization of Y; is independent of its dimensions, more
specifically, M and is upper bounded by a finite constant that does not scale with M. Hence, &,
the condition number of Y?Y} is also upper bounded by a finite constant, Cj > 0, independent

2
1
of M and hence n. Since kK > 1 and k < Cj,3 K > 0, such that the term (/{—1— ) < K.
K
Combining this results with ones obtained in (35 and (39)),

2 2
m2(2b+ 1) o= Cy (40)

Hy 1y <
tr((Yg'Yo) ) < AMCs 7

—A 1 A 1 A
From , it is noted that M > —— or — < . This implies, E [M} < [ }

)\ M n—\ n—A
Therefore,
C Ci\
E YEY) D] <E | 2| < 24 41
[tr (Yo' Yo)™)] [M]_n_A (41)

Substituting the results obtained above in equations and and combining them with the

equations and (30)), we get,

2 M

M i |? 20\
N t
E[||la—-a|[*] <2E {2 S; — ;Ti—ﬂ } — (42)
From Appendix B, it is noted that,
M 12
CS 1 ’LTO CT
<—and E|— T, —— | < —
l 1 n an M ; M T n
. Therefore, we can conclude that
~ c.C C.C CiA o
Eflla-al?)] < 252 ¢ 20 20 <2 (43)
n n n—A n
This completes the main result. O
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2.3 Simulations

This section presents the results of simulations and explanations to the same. The simulations
have been presented in Fig. |2 The simulations help ease out verification of the results obtained
of different PDEs and analyze the effect of sampling density.

Firstly, for the purpose of analysis, a field g(x,t) with b = 3 is considered and its Fourier
coefficients have been generated using independent trials of a Uniform distribution over [—1,1]
for all real and imaginary parts separately. It is ensured that the field is real by using conjugate
symmetry. Finally, the field is scaled to have |g(z)| < 1. Three differential equations have been
considered for the purpose and Fourier coefficients have been reused. The simulations have been
carried out using the following PDEs

2 a 2 84
@g(az,t) + 3ag(x,t) =0.01 <8ng(x,t) - 0.125Wg(x,t)> (44)
2 a 32
@g(:p, t) + 3ag(:c, t) = O.Olﬁg(:r7 t) (45)
0 H?

The corresponding polynomials are (i) p1(z) = 22 + 32, q1(2) = 0.01(2% — 0.01252%), (ii) p2(2) =
2% +32,q2(2) = 0.0122, and (iii) p3(2) = 2,q3(2) = 0.0122. Note that the last one is the diffusion
equation. The same two sets of Fourier coefficients were used in first two equations. Note that
the others are conjugate of these to ensure real field.

a1]0] = 0.3002; a5[0] = 0.2445;
a1[1] = —0.0413 + j0.0216; as[1] = —0.0357 + j0.0478;
a1]2] = 0.0871 + j0.0343; a3[2] = 0.0978 + j0.0729;
a1[3] = —0.1679 — j0.0586; as[3] = —0.1796 — j0.0756; (47)

The Fourier coefficients used in the last equation are
al0] = 0.11

(0]

a[l] = 0.023 — j0.076

a[2] = 0.0669 + j0.0551
3]

2
a[3] = 0.2 + j0.0821 (48)
10° ‘ 10! ‘ 102
1L
é é .5 10
=
A () A
100
102 s ‘ 1073 ‘ s 101 :
102 103 104 102 103 104 102 10°
Number of Samples Number of Samples Number of Samples

Figure 1: The three different figures show the variation of error with the number of samples for
different PDEs. The first one is the corresponding to first PDE in equation (44)), the middle one
corresponds to the second equation and the last one to the third equation i, which is the
standard diffusion equation. The variation in the distortion is clearly of O(1/n) as denoted by
the slopes in the plots. However, the error is slightly large because of the large condition number
of the matrix Y, giving issues regarding numerical stability.

The Figure [2| shows the mean square error of the estimate for different PDEs. The plots are
shown for the different PDEs as they have been listed in the equation (44)). The slopes of the
lines obtained are —1.0019, —1.0110 and —1.0086 which confirms the O(1/n) decrease.
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3 Samples from an Autoregressive Process

3.1 Field Model, Distortion Metric, Sampling Model and Measure-
ment Noise Model

The section describes the models which have been used for analysis in this work. Firstly the
field model is described followed by the distortion metric, the sampling model and finally the
measurement noise model.

3.1.1 Field Model

The Field Model is very similar to the one presented in the previous case. However, the only
difference is that a temporally fixed field is considered to increase tractability. The field is given
by g(z) and has a Fourier series expansion given by

b

ola) = 3 alijespizne) : alk] = [ (o) exp(—jma)da (19)

k=—b
where b is a known positive integer. Also,
9" ()| < 2b||glloe < 2b (50)

directly follows from the Bernstein’s inequality.|26]

3.1.2 Distortion Metric

The distortion metric will be the same as in the previous case just incorporating the temporally
fixed nature of the field. If G(z) is an estimate of the field, then the distortion, D(G, g) is defined
as

D(G, g) _EU G(x dx] Z]E[m H (51)

k=—b

1
where, A[k] = / G(z) exp(—j2mz)dx
0

3.1.3 Sampling Model

Let {X;}, be the set of intersample distances where X is the distance between i** and (i —1)*"
sample and X is the distance of the first sample from x = 0. The intersample distances have been
modeled as an autoregressive process of order 1 using a parameter p, X; = pX;_1+Y; Vi > 2 and
X7 =Y7. The p models the dependence of the current intersample distance on the previous one
and Y; corresponds to the stochastic term. Y;’s are realized using an unknown renewal process.
That is to say, Y;’s are independent and identically distributed random variables realized from
an unknown common distribution Y, such that Y > 0. Using these intersampling distances, the

sampling locations, S, are given by S,, = Z X;. The sampling is done over an interval [0, 1] and

M is the random number of samples that he in the interval i.e. it is defined such that, Sy; <1
and Spyr41 > 1. Thus M is a well defined measurable random variable[19].

For the purpose of ease of analysis and tractability, the support of the distribution of Y is
considered to be finite and inversely proportional to the sampling density. Hence, it is assumed
that

O<Y§é and E[Y] = —, (52)
n n
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where A > 1 is a parameter that characterizes the support of the distribution. It is a finite
number and is independent of n. This would be a crucial factor that governs the constant of
proportionality in the expected mean squared error in the estimate of the field. Furthermore, it
is also an important factor that determines the threshold on the minimum number of samples.
Note that,

X1=Y1; Xo=pX1+Ya=pY1+Ys; X3=pXy+Y;=p>V1+pYo+Y3 (53)

n
which can be generalized as X,, = Z p"7"Y,.. This can be used to find a closed form expression
r=1

of S,, which can be written as .S,, = ZXi = Z Z p7"Y,.. Therefore,

i=1r=1
n n—i n ) 1 n
i—r o _ n—i+l\y _ . g
S D DY ) B A g L D CY
i=1r=1 i=1r=0 2:1 =1
where, ¢;,, =1 — p"~ "1 for i =1,2,3...n. For 0 < p < 1,
mine; , =1 — p and maxc;, <1 for all n. (55)
K3 K3
. We know that by definition, Sy;41 > 1. Substiuting Sy; 41 from ,
M+1 M+1 M+1
man Ck, M+1) 1 )\(M + 1)
1<7 cim+1Y; < Y, < — YV, <——= (56)
5 e S LS e
The last step follows from . Therefore,
1—
M> n(1—p) 1 (57)

A

This gives a lower bound on the value of M. To find the bounds on the expected number of
samples, E[M], the following lemma is noted.

Lemma: For the sampling model described as above with the intersample distances coming from
an autoregressive model, the average number of samples taken in over the interval obeys the
following bounds

A

n(l-p)-1<EM]<n+ —-1

-p
Proof. For the proof of the lemma, we first need to consider the upper bound on the value of
]E[SM+1]7

M+1

E[Sm+1] = ll — Z ¢i,m+1Yi

M+1

ZY

(Inan Ck, M+1

M+1
Z Cq, M+1Y

(58)
Now using Wald’s identity[19], one can write,
M+1
PR E[M + 1] = E[Y](E[M] + 1) (59)
i=1

It is important to note that Wald’s identity is applicable on this expression and not directly on
Sar+1 because Y;’s are a set of independent and identically distributed random variables while
X;’s are not. Using this with and the bounds obtained in , we can write, E[Syr41] <

1 1
—— | = | (E[M] + 1). Since, by definition, Sp;4+1 > 1, therefore, E[Sp;41] > 1. Combine this
n

L—p
with the result in and to get,

E[M]>n(l—-p)—1 (60)
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Similarly we can consider a lower bound on E[Sys1],

M+1

ZY

Thus to upper bound the value of E[M], the following equation is considered,

1 .
T (mincear)E

— TLEYLEM + 1) = LEM+1) (6]

E >
[Snmr41] > -

M+1
1

SM+1*SM:i (1 PM z+2 7?2 M z+1Y
p i=1 p i=1
1 M+1 M+1
— - (pM—z+1 _ pM—'L)Yi — Z pM—'L+1Y'i
e i=1

. A .
Since, Sy <1 and Y < —, we can write,
n

M+1 M+1

, A A o= A
Surr=Su+ Y pPMTTY <14 Y M <14 SN =1 S (62)
i=1 i=1 n n i=0 TL(I - p)
This implies,
E[S <l4+—— 63
Combine equation with equations and to obtain,
A

This completes the proof of the lemma. Since the expected number of samples is of the order of
n, therefore, n is termed the sampling density. However, the results are governed by the effective
sampling density which is given by n(1 — p). The difference becomes relevant at values of p close
to 1 and finitely large n. More detailed explanation about this has been given in Section III, in
the light of obtained results.

3.1.4 Measurement Noise model

The noise model is same as in the previous case.

3.2 Field Estimation from the Obtained Samples

The primary idea in the reconstruction of the field would be the estimation of the Fourier
coeflicients of the field using the noisy samples that have been obtained at unknown sampling
locations where the intersample distances have been modeled using an autoregressive model. The
approach is similar to[I1], however, there would be a difference in the analysis arising because of
the correlated intersample distances. A Riemann sum kind of approximation using the obtained
samples will be used to get estimates of the Fourier coefficients of the signals. Define the estimate
of the Fourier coefficients as

Aunlt] = L3 a5+ Wi (-ZF) (65)

’L:1

The motivation to use this as the estimate is the same as the one in the previous paper. The
difference is in how this estimate behaves. This is because in [I1], the sample locations were
considered to be “near” the grid points as the sampling was on locations obtained from i.i.d.
intersample distances. Thus, because of independence, each point was individually likely to be
close to the grid points, unaffected by others. However, in this case, the intersample distances are
correlated and hence the error in one will propagate to all the further ones breaking the premise
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of these locations being “near” to the grid points. Despite this error propagation, it will be
shown that the bound on error is still O(1/n) which is non-trivial. Thus, even though the work
is inspired from the approach taken in [I1], the analysis in the given setup is far more challenging.
With our estimate under this scenario, the bound on the mean square error is analysed and the
following theorem is noted.

Theorem 2. Define the estimate of the Fourier coefficients Agen[k] as in . Then in the
scenario that the intersample distances are obtained from an autoregressive model, the expected
mean squared error between the estimated and the actual Fourier coefficients is upper bounded as

cC—-C'p”

E || Agenlk] — alk]|’] < =, (66)

where C,C’ are finite positive constants independent of n. The constants depend on X, a finite
constant independent of n that characterises the support of the distribution of Y, the bandwidth

b of the field, the ‘correlation coefficient’ p and the variance of the measurement noise, o>.

Proof. The proof will be coupled step approach by using a Riemann sum approximation of the
integral in and bounding the error between the Riemann sum and the estimate of the Fourier
coefficients given in . The detailed calculations will be separately shown in the Appendices
while using the main results to maintain the flow of the proof. Define,

M

T J2mki) W J2mki
Alk] := Y 2 g(S;) exp (— i ) ; =7 Z W (S;) exp ( i )
Therefore, Agen[k] = A[k] + W[k]. The above terms are signal and noise components in the

estimates and they have been separated to ease out calculations. The integral in , defining
alk], can be approximated using an M-point Riemann sum as,

1 & j2rki
Agrlk] = — — — 67
ol M;g(M)exp( ) (67)
It is important to note here that is this sum is actually random because of M and thus when

used to calculate the distortion, the expected value of the sum should be taken to average over
different estimates of the fields.

D(G.g) = || Agenlk] — alt]]’]

—~E |JA[K] + WK - alk]|’]
<o ] 2
= 9 [ A[K) ~ Aglk] + Anlk] — alk]|*] +2E [|1[8)]°]
<4 [{A[ | — Ag[k ]y *| + 4B [| ikl - alk][*] + 2B W (K] (68)

where the second and the fourth step follow from the inequality | Z a; < n Z la;|?, for any

1
numbers ay,asg,...,a, € C. The three terms as obtained in the ﬁnal step of ( obtained will

be analyzed separately and solved one by one. The three terms are con51dered in their specific

order.
|Alk] — Ag[k]| = ‘]\14 ig(Si)exp < ]%kz) Z ( > exp ( 32]7\T4kz> ‘
= IS oo () e (222
Sj\llé [Q(Si)—g(]\l/[ﬂ ( 32771%) ’
1 z (3
M ; 9(8i) — g <M> ‘ (69)




The third step follows from the triangle inequality. Squaring the expression obtained in the
above equation,

IAWARWFA;{i;M&)g(&>}Q
<Aﬂj2§;9(51)—g(]\2> 2
:Alafz]f[;g(sz)—g@\i/[) 2
SMi 9% |5: — i o

The second step follows from the inequality stated before, ie., (3 1, ai)2 <n> ", a2 for any
numbers ag, as ... a, € R. The last step uses the smoothness property of the field g(z). For any
smooth field g(z) over a domain D C R and any 1,22 € D, |g(x1) — g(x2)| < || |||oo]x1 — 22]-
This follows from the Lagrange’s mean value theorem. To get the first term in , we need to
take the expectations on either side in . Therefore,

2

] (71)

The expectation in the right hand side has been calculated in detail in Appendix C and from
the result obtained there,

1M
>

i=1

o i

E[|4lK] - ArlK]|] = lg'|%E i

M
M

=1

E S — - (72)

T<%u—aw>

n

which is independent of the distribution of the renewal process and only depends on the support
parameter A and Cy, C; are constants independent of n. The important part here is to note that
the bound is guaranteed as the average sampling density, n, becomes large and more specifically

if it is at least

2
(1 I ) Note that since 0 < p < 1, therefore, In p < 0. Thus, the bound
—P np
is always a positive number. In fact, since In x is an increasing function of x, so is this threshold
value an increasing function of p. It is important to note that this is a sufficient condition and
not a necessary condition. Also, this value is relatively small for mobile sensing setups. For

examples, for p = 0.9 and A = 2, this value is roughly about 400.

The other two terms obtained in equation are exactly the same as the ones obtained in [I1]
and reproducing the bounds obtained there (Appendix B and equation (15)), we can write,

B [lnlt] - olb)"] <E [0 ] (73)
e [l <2 |7 ] (79)

Combining these results with the one obtained in equation , we get

27.(.2 2
E“AMM—aWP}<Oxﬁi”iAP (75)
E (K] < n(li’:)_A (76)
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Putting together the results obtained in , , 7 ,

) ) Co(1 — Cyp™ 64b2 72 )\2 202\
E [[Agen[k] — alK]| } < qjg12, < — Ly il —p) = N2 n(l—p)—x
Co(1 - Cyp") 64272 \? 20°A
< 2
< 4(2bm) 0 + (n(1=p) — N2 + n(l—p)—A
_ron
L e (77)
n

as n becomes large. C,C’ are positive constants independent of the sampling density n. These
are mainly functions of the bandwidth parameter b, the support parameter A, the ‘correlation

coefficient’ p and the measurement noise 2.

This completes the proof of the main result in the theorem.

O

The dependence on the coefficient p that characterizes the autoregressive model is rather interest-
ing and deserves special attention. On a broad scale, due to the autoregressive model, two things
have significantly changed from the result shown in [II]. Firstly, it has resulted in a lower bound
on the average sampling density n, that is sufficient to ensure the bound on the mean squared
error. Even though it is not a necessary condition, the bound fails when n < ﬁ <1 — 1n2p>
That is, if sampling density is made too small, the aberration is visible and the error does not go
down as 1/n. This can be seen in the simulations section of the paper. Moreover, this threshold
gets larger as p gets closer to 1 and in fact is unbounded and shoots off to infinity when p is in
the neighborhood of 1. Another factor is the presence of the term of 1 — p™ in the numerator.
This does not affect the asymptotic bounds on the error because as n becomes larger, p™ becomes
smaller since 0 < pl.

Another thing that is worth noting that even though the stochastic process is such that n is
expected sampling density, the effective sampling density is lesser due to the autoregressive
model. Even though n has been termed as sampling density for the ease of understanding, it is
just that the sampling density is of the order of n. The actual or effective sampling density is
n(l — p). Asymptotically, it cannot be made this is same as n, however, for finitely large n, a
clear difference is noted when p is in the neighborhood of 1. Consider the case of n = 10000,
which is a reasonably large number of samples and one expects almost perfect reconstruction at
this sampling density. If p is close to 1, say, 0.99, the value of effective sampling density becomes
about 100 which is not sufficient for a good reconstruction. Thus, because of this effective
sampling densities, the error begins to decrease as 1/n from much larger values of n when p is
close to 1 as opposed to when it is not.

3.3 Simulations

This section presents the results of simulations. The simulations have been presented in Fig.
The simulations have a large scope as they help confirm the results obtained, help in examining
the effect of the ‘correlation coefficient’, p on the results and help in analyzing the effect of
different renewal processes that characterize the stochastic term of the autoregressive model on
the estimation error.

Firstly, for the purpose of simulations, a field g(z) with b = 3 is considered and its Fourier
coefficients have been generated using independent trials of a Uniform distribution over [—1,1]
for all real and imaginary parts separately. To ensure that the field is real, conjugate symmetry
is employed, i.e., a[k] = a[—k] and a[0] is ensured that it is real. Finally, the field is scaled to
have |g(z)] < 1. The following coefficients were obtained.

al0] = 0.3002; a[l] = —0.04131 + j0.0216;
a[2] = 0.0871 + j0.0343; a[3] = —0.1679 — j0.0586; (78)
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The distortion was estimated using Monte Carlo simulation with 10000 trials.

12 100 T ; 1071 e
= — True Field £
R N n=100
=1 4 n=1000
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Figure 2: Fig. 2. (a) The convergence of random realizations of G(z) to g(xz) is illustrated for
the field whose Fourier coefficients have been mentioned above. The field estimate for n = 10000
almost converges to the true value of the field (and is not visible in the plot). (b) The distortion
scales as O(1/n) with additive Gaussian Noise of variance 0.125 and Uniform[0,2/n] renewal
process distribution. Note the variation with p. For small values of p, a slope of —1 is distinctly
noted. However, as the value of p increase, we see that the slope does not initially follow the
trend. This can be accounted for in two ways. One being that at large values of p, the threshold
is not being satisfied at these sampling densities and the other is the effective sampling rate.
Note that how the slopes are eventually getting close to —1 as the sampling density is increased.
It be shown that at very large sampling densities the plot will behave as expected.

Field estimates were obtained in various cases using different distributions for the renewal process
and the measurement noise distributions. Uniform distribution between a and b is denoted as
Uniform|a, b]. The exp(u) denotes an exponential distribution with mean 1/u. A (p,s) denotes
a Gaussian distribution with mean p and variance s. The distribution LN[m, s] represents a
log-normal distribution where m is the mean and s is the variance of the underlying Gaussian.

In Figa) the measurement noise was generated using N (0,0.125). The autoregressive model
that was employed had p = 0.5 and the stochastic part was generated using Uni[0, 2/n]. There-
fore, A = 2. The method for reconstruction in is agnostic to this distribution though. The
figure has random realizations of the estimated field G(z) along with the true field, g(z). It can
be clearly seen that as the value of n increases the estimated field gets closer to the actual field.

The Figb) has the plots of the mean squared error between the field and its estimate. For
the plots, the noise model and stochastic part of the autoregressive model is same as in above
paragraph. However, the plots have been plotted for different values of p in the range 0.2 to 0.99.
Note that the illustrated plots are log-log plots.

The Figc) has plots for different renewal processes for the stochastic part of the autoregressive
process. For heavy-tailed, infinite support distributions like the General Pareto distribution, the
error does not decrease as 1/n. For the other finite support distributions, the error follows the
O(1/n) decrease.
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4 Conclusion

The problem of sampling spatially bandlimited fields was studied with a practical viewpoint.
Firstly, the sampling of spatially bandlimited field evolving according to the constant coefficient
linear partial differential equation using a mobile sensor was studied. The field was estimated
using the noisy samples obtained at unknown locations and time instants obtained from two
independent and unknown renewal processes and it was shown that the mean squared error
between the estimated field and the true field decreased as O(1/n), where n was the average
sampling density. The main idea that was leveraged was the fact that the locations of the samples
got closer to the ones corresponding to uniform sampling as the sampling density increased and
thus oversampling was used to reduce the error.

Secondly, the problem of sampling with unknown sampling locations obtained from an autore-
gressive model on the intersample distances was studied. The field was estimated using the noisy
samples and the mean squared error between the estimated and true field was shown to decrease
as O(1/n), where n was the average sampling density.

The most important part was that two interrelated problems which arise in the case of practical
modeling of sampling were studied separately. However, the results obtained are such that they
can be combined together to form a single result that states that if a spatiotemporally varying
field is sampled with location and time unaware sensors such that intersample distances come
from an autoregressive process, it is possible to reconstruct the field with an error of O(1/n),
where n is the average sampling density. This is enabled by the separability of the spatial and
the temporal part in the analysis of the field.
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Appendix A

This appendix mainly deals with proving the bandlimitedness of the field for all ¢ > 0 given
that the field was spatially bandlimited at ¢t = 0. Spatial bandlimitednes, as defined previously,
refers to the fact that the Fourier series of the field over its spatial support has finite number of
terms.The main result shown is that for a field evolving according to the equation , if it is
known that the field and its m — 1, temporal derivatives are spatially bandlimited at ¢t = 0, then
the field will always remain bandlimited. Here m is the degree of the polynomial p. A major
part of this proof will be similar to the approach in Section and has been reproduced here
for ease of understanding. Since the field is assumed to have a finite support, the field can be
written as

oo

Z ar(t) exp(j2rkz)) ; ax(t) :/ g(x,t) exp(—j2rkz)dx (79)
k=00

— 00

Substituting this in the equation , and using along with the orthogonality property for
the Fourier basis we can write,

sz o (k_z:oo k(t) exp(j2mkz ) qu o7 (k_z:oo a(t) exp(j27rkx)>
== Z (Z Di 8tz(t)> exp(j2rkx) = ( qi(j27k) )exp(j?w/m)
k=—o0 \i=0 k:—foo

- L Dlag(t >
& Z <sz a];l.())exp j2rkz) = Z ar(t)q(j2rk) exp(j2rkz)

k=—o00 \i=0

b) = dlag(t ,
= Zpi 81;( ) _ q(j2rk)a(t) =0 Vk € Z (80)
=0

Essentially, each ay(t) evolves by an ordinary differential equation (ODE) with constant coef-
ficients. The solution of ODE with constant coefficients is well known (via unilateral Laplace
transform [20]). For each k, this leads to the polynomial equation,

m
ert

0'A
i——— — q(j2mk) Ae™ =
;:Op G~ d(j2mk)Ae” =0

S (Zpiri — q(j27rk‘)> Ae™ =0

i=0
= p(r) —q(j27k) =0 (81)

The solution for ay(t) is a of the form Ae™, where r is the root of the above polynomial and A is a
constant independent of ¢. Let the roots of the above polynomial be r1(k),r2(k), ... 7rm (k). Note
that the roots of the polynomial are indexed by k as well, implying there is a set of m roots for
each value of k. Furthermore for simplicity of analysis, all of the roots 1 (k), r2(k), ... m(k) are
considered to be distinct for a given k as in Section[2.2} However, it is possible that r; (k1) = 7;(k2)
for some 14, j, k1 # ko. In fact, the solution for ag(t) can thus be written as a linear combination of
these roots. Thus ay(t) = Y i~ axi(0) exp(r;(k)t). The coeflicients have been chosen to maintain
consistency of represent as a function of time. Now, we know that the field is bandlimited and
so are its m — 1 partial derivatives at ¢ = 0. This can be written for ¢ =0,1,2...m — 1

By (t) :{c,ﬂ if |k| < b (52)
t=0

0 otherwise

where cy;’s are real constants. Since ai(t) = Y i~ ar;(0) exp(r;(k)t), therefore,

aja’“,(t) = ari(0)r] (k) exp(ri(k)t) ¥ j > 0 (83)
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Otay (t)

ott _
Then for k' using equation , we can combine all the equations for all ¢ and the resulting
expression can be written in matrix form as,

Consider k' in the range |k| > b. Then for ¥’ and V i = 0,1,2...m, we have =0.

1 11

ri(k) k) ... (k)] | @1

SCONE (S NACO1 B R (34)
) ) . ] S

Since the roots are assumed to be distinct, therefore the matrix on the left is a Vandermonde
matrix and is always invertible[23]. This means that ay; = 0 Vi =1,2,3...m and all k| > b.
This implies that the field is bandlimited, ie, ax(¢t) = 0 for all |k| > b.
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Appendix B

M .2
1 7
This section primarily deals with establishi bound on the terms E | — > |§; -
1S section primaril y eals wi establis lng upper bound on e terms M 2 M ]
M . 2 /
dE 1§:T o™ i tw f independent les. Th | based li
an — P T mn € case OI 1mdaependent sampiles. e renewa ase samplin
M 2= M P P ping

model for the spatial terms is the same that has been considered in [I1]. Moreover, the bound
M

| M
>
i=1

that we have the boand7

1

Si— 17

on the term E

2
] has been elaborately derived there([I1], Appendix A). Using

C
<25
n

1
Si— a7 (85)

M
E|—
D
for some Cg > 0 and independent of n. The proof for the other term follows in a similar manner.

Define,
o\
Ym = l(Nl - ]\;>

(- B) (5 B

From equation (31) in [I1], we have

i=1

oo

1Th
T, — —
M

2 2
1 1
‘M:m] mt

Consider the expression,

E[(Th — T0)*|M =m] =E [{ % (N" - ﬁ) }2

i=1

-

= mym,m + m(m — 1)z, (88)

where the second step is obtained from evaluating and rearranging the expression along the
exchangability of V;’s. Since we know that, Thy < Ty and Ths41 > Tp, define

JM:T()—TM:>JM<TM+1—TM§% (89)
2

Also J3, = (Ty — T0)? = E[(Tm — Tp)*|M = m] = E[J3,|M =m] < 'u—z Using the above
n

two results, we can conclude that, my,, +m(m — 1)z,, = E[J3;|M = m]. Combining this with

, we can write,

M 12
1 ’LT() m+1 m2_1 ,
E M;TL_M ‘M:m] = D) Z/m+3m(m_1) (_mym‘i‘E[.}A{‘M:m])
m+1 m+ 1
- m E[J3/|M = m]
2 3
m+1 2 1
<t - il
=Ty Im T (90)

M
.. . 1
This is exactly the same result as obtained for E i Zl S; —

2
ﬁ ] in [II]. Using the same
steps for the expression in S;, we can conclude,
M
1 Cr
E|— — 91
Ep : o

) -
‘M—m <
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An important thing to note here is that even if Jy, < % for some positive constant K, the
result will hold. Interestingly, K, can be O(y/n), and still the result will hold. The idea is
that the difference between Ty and Ty should of O(1/4/n), that is Ty cannot be simply any
number larger than Tj;. It has to be a reasonably accurate estimation of the time taken. It is
important to know this to help decide the construction of Y, because the entire idea is based on
the assumption that the samples are “near”the grid points. But to determine the grid points,
we must have the knowledge of the support of the function which has to be finite.

Appendix C

1M i |2
3 2|50
the samples come from an autoregressive process. To begin with consider the remainder term
Rjps, which is the distance remaining after M samples. Therefore, Ry, = 1 — Sp;. An upper
bound on this will be established as this as this will be of use later.

This section will mainly be elaborating the bound on E S; — for the case when

M+1 00 A A
Ry =1—Sy <Sy+1— Sy = pM_H_lY;-S pi—zi
" ; ; n  n(l—p)
Thus, we have,
Ry < —/——— 92)
n(l—p) (

The main expresstion that this Appendix will be dealing with is the upper bound on the mean
square error between the sampling locations and the uniform grid locations. The expression is

given by
LM LM 2 M i 1 2
p sl =l {5 ) )
To ease out the calculations, a conditional version of this expectation will be dealt with that

M i 2
1 1
is, for M = hich is gi bE—E E Xp— —
is, for m which is given by lM 2 {k_l < & M> }
assumption will be relaxed for the final results. Define the following,

i

> Xy

k=1

2

E =E

i
Si— 7

M = m] and then later the

b(i) :=E [(Xi - ;) ‘M:m} :;;p”E[mM:m] —% (93)
(i) = Var [(Xi _ ;) ‘M _ m} — Var[X,| M = m] (94)

Since we know that for a random variable X, E[X?] = Var[X] + E[X]2. Therefore, we can write,

(v-2)

E

M = m] = c(i) + b*(4) (95)
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Consider,

E[XlXﬂM = m] =K

) (o) o]
p@ kZp’ lym) ‘Mzm]

[
b&

L
=
=
=
=
ES

.5} i J
— PHTRYAIM =m]+2) > p M EYLM = mIE[Y|M = m]
=1 k=1l=k+1
min{4,5} i
= P I 2AVar Y |M = m] + sz FI-IR]Y M = m]E[Y)|M = m)
=11l=1

= pli=il za:pQ(a_l)Var[YﬂM =m]+ (b ) ( (J) + :ﬂ)
= pl"le(a) + (b(i) + nl%) <b(j) + ) (96)

Il
—
:s-

where a = min{i, j} and b(i) and b(j) have been defined in (93).

[(5-2) (ol

E[X;X;|M = m]—i(E[X|M m] +E[X;|M = m]) + —

m2
o 1 1 1 1 1
— pli—il il b))+ = b))+ — —
piotlea) + (v + 2 ) (000 + o) = o (B0 4 480+ ) 4
— pli=dle(min{i, j}) + b(i)b(j) (97)
Define for convenience of notation,
1 & i [? 1
m = 7 [ 5 Zp =X — —
T, =E l i ; Si— a7 . ( A m) (98)
Therefore we can write,
r 1 M % 1 2 1 m i 2
e[ () Vo] e[S (1) oo

'1 m i 2
—E|L { z,}

(1
=E E(me+(mf1)Z§+~~+Z§1+2{(mf1)leQ+(m—2)leg+-~~+lem

+(m - 2)Z2Z3 + (m - 3)Z2Z4 + .. .Z2Z4 —+ -+ Zm_lZm}) ’M = m]
—E[ (2{mZ} + (m = V)Z3 + -+ Z3 + (m = 1) Z1Zs + (m — 2) 21 Zs + -+ + Z1 Zy+

(m—2)ZsZs+ (m —3)ZoZs+ -+ Zyp-1Zim} — {mZ; + (m = 1)Z3 + -+ Z2,}) ‘M = m}
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The similar terms can be grouped together to form a simpler expression like,
T,=E [ ! (2{mZ1 (m—12Z1Zy+ (m—2)Z217Z3+ -+ Z1Zm+
(m—1)Z5 + (m —2)Z2Z5 + (m — 3)ZoZs + ... ZoZp + ...
4272 A D1 Zy + 22— {mZE + (m— 1) Z5 + -+ Z2,}) 'M = m]

Using the expressions from and l) and noting that Z; = X; — %, the above expression
can be rewritten as,

{ - [((m—=r)(p"e(1) + b(1)b(r +1))] + z_: [(m—1—7)(p"c(2) +b(2)b(r +2))] + ... }

—{m[c(l) + 02 ()] 4+ (m — D)[e(2) +b*(2)] + ... }

This can be condensed to be written as,

<.

m—

T = 237 S lm—r i+ 1)(0"eli) + b(iJo(r 7%2 — i 1)[e(i) + B0 (99)

i=1 r=0

Inspired by the above equation , define the following,

kpm =2 Z : p e(i) + b(D)b(r + 1)
i1=1 r=0
B C(Z)erz(z)iEl(XZ;) Mm] (100)
i=1 i=1

2 Z : [(m—r—i4+1)(p"c(i) + b(i)b(r +14))] <2 Z : m(p"c(i) + b(i)b(r + 7)) = mky,
=1 r=0 =1 r=0
> (m—i+D)e(i) +b2(0)] =Y eli) + b2(i) = I, (101)
i=1 i=1

Combining the expressions obtained in equations , 1100) and (101]), one can conclude T, <
%(mkm — Im). Again consider the remainder term, Ry; = 1 — Sy;. Squaring both sides and
taking expectations, we get,

E[(Sa — 1)?[M = m] = E[R},[M = m] (102)

For the left hand side term in the above equation,

E[(Sy — 1)’|M =m] =E {]i <X’“ B nlz) }2
=F _<§:Zk>2 ’M=m
k=1

=E Zf+Z§+.-.+an+2{2122+2123+~-+Zm_12m}’M—m]

oo

=E 2{Z12+Z1Z2—|—-~~—|—Zm_1Zm}—{Z%+Z22~~'+an}‘M=m}

m—1

227”: b(r +1)) i +b2

i=1 i=1

=k zm (103)
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For the term on the right hand side in ((102]),

A A2
<——— = ERyM=m]< —~—— 104
RM_n(l—p) [ m]—n2(17p)2 (104)
The equations (102)), (103)) and (104) can be combined to give,
A2 A2
km =l < ————— kyp < ———— +1 1
m S A T S R (105)

Using the fact that T;, < %(mkm — In) and above inequality, the upper bound on T}, now
becomes,

o~

m A2 l A2

1
T, < —_ < —_—— lmfﬂzi I | 1 — — 106
< (s e e s E ( m)( )

(ki — L) = Ky —

1
m

Finally, taking off the conditional expectation and using expressions from (98), (100) and (106,

one can write,

i=1

7

SZ‘_M

2 )\2
< —+ K
=W

(a) )\2 M 1 2
<~ _4E —
e [{ S () )
(®) A2

< erE 2%(}(%&2)]

A2 M

(c) 2
= ——— 1+ E|2 X:
n2(1 — p)? + Z

YT (107)

where (a) follows from the fact that

< 1, (b) is a direct application of Cauchy Schwarz,
(c) follows from linearity of expectation and (d) uses the following result obtained from

1
which can be restated as i < m Hence,

E[L%m

M
The proof will be complete if the term E lz Xf] is upper bounded by a term of order 1/n. For
i=1

that purpose, consider

%

i i
r=1

r=1 n 1_p

A2 (1—pi\?
This implies, X? < — ( 1 P ) . Taking expectations,
n P

M , M y2 N2 22 M -
EL;)Q <E ;n?<1—pp> ] :(n(l_p))QELz:;(l—p)] (108)
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Since, 0 < p < 1, therefore, (1 — p*)?2 < (1 —p*) Vi >1and p* > p/ V j > i. Hence,

da- pi)ﬂ

i=1

E

M , 22
le = d—pp "

X2 ST A2 S
<= ;“"’)1 = =) <E[M]‘E ;”D
R, EM]-E i M —L(E[M]—E[M M) (109)
= (1= p))? 2P ) T (= )2 ’

To establish bounds on E [M,OM]7 consider the function f : R — R, given by f(x) = xp®, where
0 < p < 1 is a finite constant independent of z. The function is differentiable and its second
derivative is given by f”(x) = Inp(2 4+ zlnp)p*. This is positive as long as = > —ﬁ. Thus
%, the function is convex. Since the function is convex in that
interval, we can apply the Jensen’s inequality. Jensen’s inequality states for any function h(z)
that is convex over an interval Z C D where D is the domain of h(z), and a random variable X
whose support is a subset of Z, the inequality E[h(X)] > h(E[X]) holds true.

the in region defined by x > —

We know that f is convex for = > —ﬁ and from , we know that M > M — 1. Therefore

if M > —%, then using Jensen’s inequality, we can say that E [Mp™] > E[M]p®M]. The

1- 2
condition on M will be always true if L \ P) —1> ——lnp. That is if
A 2
— (1 =-—. 110
"I < lnp> (110)

- 2 >\2 M
E [ZXZ] < = p))2 (E[M] - E [Mp"])

i=1
A2 A2
M| — E[M]pM]) = EIM(1 — pEIM]
i (EIM—BOM) = = (B =)

(a) )\2 (1 - p) 1

< 1—pttx 111

= = p)? (”* X >< ) (111)
where (a) follows from (64)) and decreasing nature of p*. From (64]), we have E[M] < n+ @ —

(1-p)

1§n+(1;)\”)andthusl—pE[M}§1—p”+ x gl—p"‘*‘%

Using (107), (109), (110) and (111}, we can write

1 & i |? A2 A2 (1-p) il 2\
ElMESi_M ]Sn%l—p)”?(n(l—p))? (”* ) )(1"’+ )+
2A2(1—pt3) 1 2X A2 2
S G R Wy By W Ry (”A)
< Co(1 —nCﬂ’n) (112)

for some positive constants Cy, C; independent of n. This proves the upper bound. It is very
A 2
essential to note that this bound holds surely under the condition that n > 15 (1 - 1).
P np
Also, that is condition is a sufficient one, but not necessary. This completes the proof.
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